Muscleblind-Like 1 Knockout Mice Reveal Novel Splicing Defects in the Myotonic Dystrophy Brain
نویسندگان
چکیده
Myotonic dystrophy type 1 (DM1) is a multi-systemic disorder caused by a CTG trinucleotide repeat expansion (CTG(exp)) in the DMPK gene. In skeletal muscle, nuclear sequestration of the alternative splicing factor muscleblind-like 1 (MBNL1) explains the majority of the alternative splicing defects observed in the HSA(LR) transgenic mouse model which expresses a pathogenic range CTG(exp). In the present study, we addressed the possibility that MBNL1 sequestration by CUG(exp) RNA also contributes to splicing defects in the mammalian brain. We examined RNA from the brains of homozygous Mbnl1(ΔE3/ΔE3) knockout mice using splicing-sensitive microarrays. We used RT-PCR to validate a subset of alternative cassette exons identified by microarray analysis with brain tissues from Mbnl1(ΔE3/ΔE3) knockout mice and post-mortem DM1 patients. Surprisingly, splicing-sensitive microarray analysis of Mbnl1(ΔE3/ΔE3) brains yielded only 14 candidates for mis-spliced exons. While we confirmed that several of these splicing events are perturbed in both Mbnl1 knockout and DM1 brains, the extent of splicing mis-regulation in the mouse model was significantly less than observed in DM1. Additionally, several alternative exons, including Grin1 exon 4, App exon 7 and Mapt exons 3 and 9, which have previously been reported to be aberrantly spliced in human DM1 brain, were spliced normally in the Mbnl1 knockout brain. The sequestration of MBNL1 by CUG(exp) RNA results in some of the aberrant splicing events in the DM1 brain. However, we conclude that other factors, possibly other MBNL proteins, likely contribute to splicing mis-regulation in the DM1 brain.
منابع مشابه
Muscleblind-Like 1 and Muscleblind-Like 3 Depletion Synergistically Enhances Myotonia by Altering Clc-1 RNA Translation
UNLABELLED Loss of Muscleblind-like 1 (Mbnl1) is known to alter Clc-1 splicing to result in myotonia. Mbnl1(ΔE3/ΔE3)/Mbnl3(ΔE2) mice, depleted of Mbnl1 and Mbnl3, demonstrate a profound enhancement of myotonia and an increase in the number of muscle fibers with very low Clc-1 currents, where gClmax values approach ~ 1 mS/cm(2), with the absence of a further enhancement in Clc-1 splice errors, a...
متن کاملProgressive impairment of muscle regeneration in muscleblind-like 3 isoform knockout mice.
The muscleblind-like (MBNL) genes encode alternative splicing factors that are essential for the postnatal development of multiple tissues, and the inhibition of MBNL activity by toxic C(C)UG repeat RNAs is a major pathogenic feature of the neuromuscular disease myotonic dystrophy. While MBNL1 controls fetal-to-adult splicing transitions in muscle and MBNL2 serves a similar role in the brain, t...
متن کاملCompound loss of muscleblind-like function in myotonic dystrophy
Myotonic dystrophy (DM) is a multi-systemic disease that impacts cardiac and skeletal muscle as well as the central nervous system (CNS). DM is unusual because it is an RNA-mediated disorder due to the expression of toxic microsatellite expansion RNAs that alter the activities of RNA processing factors, including the muscleblind-like (MBNL) proteins. While these mutant RNAs inhibit MBNL1 splici...
متن کاملA muscleblind knockout model for myotonic dystrophy.
The neuromuscular disease myotonic dystrophy (DM) is caused by microsatellite repeat expansions at two different genomic loci. Mutant DM transcripts are retained in the nucleus together with the muscleblind (Mbnl) proteins, and these abnormal RNAs somehow interfere with pre-mRNA splicing regulation. Here, we show that disruption of the mouse Mbnl1 gene leads to muscle, eye, and RNA splicing abn...
متن کاملDrosophila muscleblind Codes for Proteins with One and Two Tandem Zinc Finger Motifs
Muscleblind-like proteins, Muscleblind (Mbl) in Drosophila and MBNL1-3 in vertebrates, are regulators of alternative splicing. Human MBNL1 is a key factor in the etiology of myotonic dystrophy (DM), a muscle wasting disease caused by the occurrence of toxic RNA molecules containing CUG/CCUG repeats. MBNL1 binds to these RNAs and is sequestered in nuclear foci preventing it from exerting its nor...
متن کامل